

Important Terminology

Anoxia: absence of O₂ supply in the presence of perfusion- no oxygen

Asphyxia: absence of O_2 & accumulation of CO_2 .

Hypoxia: \downarrow O₂ in the body, often specified where in the body e.g. tissue hypoxia, alveolar hypoxia

<u>Hypoxemia</u>: \downarrow O₂ in the blood. Specifically, hypoxemia is determined by measuring the PO₂ of arterial blood (plasma)

$[P(A-a)O_2]$

Normal range=10-15 mmHg breathing room air, F₁O₂=0.21

- the normal range ↑ with age (1 mmHg per decade due to a ↓PaO₂ as a result of ↑ ventilation perfusion mismatch
- is due to venous admixture (anatomic shunt & ventilation perfusion mismatch in health)
- is due to venous admixture (anatomic shunt, ↑ventilation perfusion mismatch & physiologic shunt in disease states)

Causes of Hypoxemia

- Hypoventilation
- 2. Low inspired oxygen
- 3. R-L shunt
- 4. V/Q inequality (a.k.a. V/Q mismatch)
- 5. Diffusion Impairment

Causes are subdivided into those with an increase in the $P(A-a)O_2$ and those where the A-a gradient remains within the normal range.

Hypoventilation

- ↑ PaCO₂ (hypercapnia)
- P(A-a)O₂ within normal range
- ↑ F₁O₂ alleviates the hypoxemia
- mechanical ventilation required to eliminate hypercapnia

Hypoventilation

Causes:

- 1. Depression of CNS by drugs
- 2. Inflammation, trauma or hemorrhage in the brainstem
- 3. Abnormal spinal cord pathway
- 4. Disease of the motoneurons of the brain stem/spinal cord
- 5. Disease of the nerves supplying the respiratory muscles.
- 6. Disease of the neuromuscular junction
- 7. Disease of the respiratory muscles
- 8. Abnormality of the chest wall
- 9. Upper airway obstruction

Low inspired oxygen (↓PIO₂)

- \downarrow PIO₂ = (P_B 47 mmHg) FIO₂
- P(A-a)O₂ within normal range
- \(\perp \) PaCO₂ (hypocapnia due to hyperventilation in response to low arterial PO₂)

Right to Left Shunt

• ↑ P(A-a)O₂

• PaCO₂ within the normal range

Anatomic Shunt

A portion of Blood bypasses the Lungs through an Anatomic Channel

In all Healthy Individuals

- a portion of the bronchial circulation's venous blood drains into the pulmonary vein.
- a portion of the coronary circulation's venous blood drains through the thebesian veins into the left ventricle.

Anatomic Shunt

A portion of Blood bypasses the Lungs through an Anatomic Channel

Disease States (Congenital abnormalities)

- intra-cardiac shunts
- intrapulmonary fistulas

Physiologic Shunt

A portion of cardiac output that goes through the normal pulmonary vasculature does not come into contact with alveolar air due to filling of the alveolar spaces with fluid

e.g.

- drowning
- pulmonary edema

Key Clinical Feature of R-L Shunts

"the accompanying hypoxemia can not be corrected with supplemental oxygen"

Ventilation Perfusion Inequality

- ↑ P(A-a)O₂
- PaCO2 within the normal range
- most common cause of hypoxemia in disease states

Normal V/Q Inequality from the Apex to Base of the Lungs

Diffusion Impairment

- P(A-a)O₂ normal at rest, ↑s with exercise
- PaCO₂ within the normal range
- a rare observation in clinical setting

Summary	arterial blood		venous blood			Does supplemental oxygen (†F ₁ O ₂)
	PO ₂	PCO ₂	PO ₂	PCO ₂	P(A-a)O ₂	increase PaO2 substantially?
Hypoxemia						
Hypoventilation	1	1	1	1	normal	yes
↓ P _I O ₂	1	Ţ	J	Ţ	normal	yes
R-L Shunt	↓	normal	Ţ	normal	↑	no (depends on magnitude of t shunt)
Diffusion defect	↓	normal	ţ	normal	↑ during exercise	yes
VA/Q inequality	↓	normal	↓	normal	↑	yes
Tissue hypoxia						
Anemic hypoxia	normal	normal	↓	normal	normal	no
CO poisoning	normal	normal	↓	normal	normal	possibly
Stagnant hypoxia	normal	normal	↓	normal	normal	no
Histotoxic hypoxia	normal	normal	<u> </u>	normal	normal	no

Important note that mixed causes of hypoxemia occur frequently. It is often impossible to define the extent of the contribution of each mechanism in the acutely ill patient.