Important Terminology Anoxia: absence of O₂ supply in the presence of perfusion- no oxygen Asphyxia: absence of O_2 & accumulation of CO_2 . Hypoxia: \downarrow O₂ in the body, often specified where in the body e.g. tissue hypoxia, alveolar hypoxia <u>Hypoxemia</u>: \downarrow O₂ in the blood. Specifically, hypoxemia is determined by measuring the PO₂ of arterial blood (plasma) ### $[P(A-a)O_2]$ Normal range=10-15 mmHg breathing room air, F₁O₂=0.21 - the normal range ↑ with age (1 mmHg per decade due to a ↓PaO₂ as a result of ↑ ventilation perfusion mismatch - is due to venous admixture (anatomic shunt & ventilation perfusion mismatch in health) - is due to venous admixture (anatomic shunt, ↑ventilation perfusion mismatch & physiologic shunt in disease states) # **Causes of Hypoxemia** - Hypoventilation - 2. Low inspired oxygen - 3. R-L shunt - 4. V/Q inequality (a.k.a. V/Q mismatch) - 5. Diffusion Impairment Causes are subdivided into those with an increase in the $P(A-a)O_2$ and those where the A-a gradient remains within the normal range. # **Hypoventilation** - ↑ PaCO₂ (hypercapnia) - P(A-a)O₂ within normal range - ↑ F₁O₂ alleviates the hypoxemia - mechanical ventilation required to eliminate hypercapnia ### **Hypoventilation** #### Causes: - 1. Depression of CNS by drugs - 2. Inflammation, trauma or hemorrhage in the brainstem - 3. Abnormal spinal cord pathway - 4. Disease of the motoneurons of the brain stem/spinal cord - 5. Disease of the nerves supplying the respiratory muscles. - 6. Disease of the neuromuscular junction - 7. Disease of the respiratory muscles - 8. Abnormality of the chest wall - 9. Upper airway obstruction # Low inspired oxygen (↓PIO₂) - \downarrow PIO₂ = (P_B 47 mmHg) FIO₂ - P(A-a)O₂ within normal range - \(\perp \) PaCO₂ (hypocapnia due to hyperventilation in response to low arterial PO₂) # Right to Left Shunt • ↑ P(A-a)O₂ • PaCO₂ within the normal range #### **Anatomic Shunt** #### A portion of Blood bypasses the Lungs through an Anatomic Channel #### In all Healthy Individuals - a portion of the bronchial circulation's venous blood drains into the pulmonary vein. - a portion of the coronary circulation's venous blood drains through the thebesian veins into the left ventricle. #### **Anatomic Shunt** ### A portion of Blood bypasses the Lungs through an Anatomic Channel Disease States (Congenital abnormalities) - intra-cardiac shunts - intrapulmonary fistulas # **Physiologic Shunt** A portion of cardiac output that goes through the normal pulmonary vasculature does not come into contact with alveolar air due to filling of the alveolar spaces with fluid #### e.g. - drowning - pulmonary edema ### **Key Clinical Feature of R-L Shunts** "the accompanying hypoxemia can not be corrected with supplemental oxygen" ### **Ventilation Perfusion Inequality** - ↑ P(A-a)O₂ - PaCO2 within the normal range - most common cause of hypoxemia in disease states ### Normal V/Q Inequality from the Apex to Base of the Lungs ### **Diffusion Impairment** - P(A-a)O₂ normal at rest, ↑s with exercise - PaCO₂ within the normal range - a rare observation in clinical setting | Summary | arterial blood | | venous blood | | | Does supplemental oxygen (†F ₁ O ₂) | |---------------------------------|-----------------|------------------|-----------------|------------------|----------------------|--| | | PO ₂ | PCO ₂ | PO ₂ | PCO ₂ | P(A-a)O ₂ | increase PaO2 substantially? | | Hypoxemia | | | | | | | | Hypoventilation | 1 | 1 | 1 | 1 | normal | yes | | ↓ P _I O ₂ | 1 | Ţ | J | Ţ | normal | yes | | R-L Shunt | ↓ | normal | Ţ | normal | ↑ | no (depends on magnitude of t
shunt) | | Diffusion defect | ↓ | normal | ţ | normal | ↑ during
exercise | yes | | VA/Q inequality | ↓ | normal | ↓ | normal | ↑ | yes | | Tissue hypoxia | | | | | | | | Anemic hypoxia | normal | normal | ↓ | normal | normal | no | | CO poisoning | normal | normal | ↓ | normal | normal | possibly | | Stagnant hypoxia | normal | normal | ↓ | normal | normal | no | | Histotoxic hypoxia | normal | normal | <u> </u> | normal | normal | no | **Important note** that mixed causes of hypoxemia occur frequently. It is often impossible to define the extent of the contribution of each mechanism in the acutely ill patient.