

Roadmap

- 1. Octopus *vulgaris*
 - Part of the Mollusc family
 - Environment and Anatomy of Octopus vulgaris
- 2. Ventilatory Respiration in the Octopus vulgaris
 - Gills
 - Ventilation cycle
 - Adaptions in the circulatory system
 - Oxygen transport: Hemocyanin
- 3. Skin Diffusion Respiration in Octopus vulgaris

What are Molluscs?

- Invertebrates
- One of the most diverse phylums
- With at least 50,000 living species
- More likely around 200,000 living species

Molluscs Diagram [*Photograph*]. (n.d.). Retrieved from https://sharon-taxonomy2010-p2.wikispaces.com/Mollusca

Basic Molluscan Body Plan

Inside Mantle Cavity

- Head
- Visceral Mass
 - Contain all the organs
- Foot

Mollusc Body Plan [Photograph]. (n.d.).
Retrieved from http://media1.shmoop.com/images/biology/biobook animevoldiv graphik 11.png

Octopus vulgaris

- Class: Cephalopoda
- Geographic range:
 Mediterranean Sea, Eastern
 Atlantic Ocean, Japanese
 waters
- Depth: 200 m
- Temperature range: 16 21° C
- Physical Description: 1-3 feet in length (including arms)
 - 8 arms with suckers
 - No internal shell
 - Bilateral symmetry
 - Ectothermic

Octopus vulgaris [Photograph]. (n.d.). Retrieved from http://www.biopix.com/common-octopus-oct

Octopus vulgaris

Body Structure:

- Arms branch from the head
- Siphon
 - Tube used for water exchange
- Mantle
 - Behind the head
 - Muscular structure which holds all the organs (gills, hearts, digestive system and glands)
 - Provides protection and aids in respiration

Respiration in Octopus vulgaris

Gills

Lamella (thin plate structures) folds into complex structures that resemble a fan shape. The octopus has afferent and efferent vessels passing through each gill.

Octopus vulgaris Ventilation

Octopus *vulgaris* is a negative pressure breather (like humans!)

Steps of octopus ventilation

- 1. Contraction of radial muscles cause the mantle sac to expand. This decreases pressure in the mantle and water flows in through the siphon.
- 2. Water pushed through the gills countercurrent to the capillaries (countercurrent exchange) and into the central post-branchial space
- 3. Radial muscles relax and lateral mantle muscles contract pushing water back out through the siphon

Adaptations to the circulatory system

- Octopus are highly active and require high delivery of oxygen.
- As a member of the mollusca family, octopus have gills upstream of the heart and therefore have very low blood pressure passing the gills

Adaptations to the circulatory system

Octopus has contractile veins and accessory pumps (branchial heart) to push blood through the gills.

Oxygen Transport

What is Hemocyanin

- Less evolved version of hemoglobin
 - Hemocyanin is much larger than hemoglobin: less efficient
- Copper-protein complex that binds reversibly with oxygen
- Suspended in Hemolymph of Octopus vulgaris,
- Calibrated through evaluation to low oxygen and cold temperature conditions (like that of Octopus vulgaris)

Adapted from the Concepts of Biology (1st Canadian edition)

What would happen if hemocyanin replaced hemoglobin in humans?

Keep in Mind: Hemocyanin, similarly to hemoglobin, has an oxygen and carbon dioxide dissociation curve.

What would happen if hemocyanin replaced hemoglobin in humans?

Recall the Oxyhemoglobin Dissociation Curve:

Left shift --> Increases the affinity of oxygen to hemoglobin, oxygen isn't released easily

Right shift --> Decreases the affinity of oxygen to hemoglobin, oxygen unbinds easily

Hemoglobin saturation curve [Graph]. (2006). Retrieved from

https://en.wikipedia.org/wiki/Oxygenhemoglobin_dissociation_curve#/ media/

<u>File:Oxyhaemoglobin_dissociation_cur</u> ve.png

Substituting hemoglobin with hemocyanin in humans will cause a RIGHT shift.

In the octopus, temperatures range from 16 - 21°C. The human body temperature is approximately 37 °C. The right shift decreases the affinity of hemocyanin to oxygen. This causes very poor binding of oxygen to hemocyanin with little oxygen reaching the tissues \rightarrow Hypoxia!

Also acceptable:

Immune response Blue blood

Respiration in Octopus vulgaris

Skin Breathing

- When the body position is curled:
 - Exposed areas to moving water include the internal mantle surface
- Based on this, it is estimated that well - ventilated areas of skin could undergo 41% of the total oxygen uptake (as long as water is flowing over the body)

O. vulgaris from the Mediterranean Sea [Photograph]. (2007). Retrieved from

https://en.wikipedia.org/wiki/ Common_octopus#/media/ File:Octopus_vulgaris_2.jpg

Skin Breathing Ctd.

- When boundary layers (slow moving water or still water) form:
 - Decreases to 8%
 - Exposed area isn't as well ventilated anymore
- During exercise/active movement:
 - Skin surface exposure increases
 - Cutaneous uptake can only provide 33% of the total oxygen uptake

Muller, J.S. (Photographer). (2012). Retrieved from

https://www.flickr.com/photos/ joachim_s_mueller/6775464689

Differences between Octopus and Humans

	Humans	Octopus
Phylum	Chordata	Mollusca
		Gills
Breathing Organs	Lungs	Skin
Pressure Breathing	Negative	Negative
Oxygen Availability	210,000 ppm	0-20 ppm
Internal Temperature	37°C	16-21°C
Oxygen Transporter	Hemoglobin	Hemocyanin

References

Aguado, F., García García, B. (2002). Growth and food intake models in Octopus vulgaris Cuvier/1797: influence of body weight, temperature, sex and diet. *Aquac. Int., 10*: 361–377.

Guerra, A. (1992). Mollusca: Cephalopoda. In: Ramos, M.A., et al. (Eds.) *Fauna Iberica*, vol. 1. Museo Nacional de Ciencias Naturales, CSIC, Madrid, p. 327. ISSN:84-00-07010-0.

M. b. v. Roberts, Michael Reiss, Grace Monger (2000). Advanced Biology. London, UK: Nelson. pp. 164–165. Houlihan, D. F., Innes, A. J., Wells, M. J., & Wells, J. (1982). Oxygen consumption and blood gases of Octopus vulgaris in hypoxic conditions. *Journal of Comparative Physiology*, 148(1), 35–40.

Wells, J. Cutaneous respiration in Octopus vulgaris. (1996). Journal of Experimental Biology, 199, 2477 – 2483.

Wells, M., & Smith, P. (1987). The performance of the octopus circulatory system: A triumph of engineering over design. Experientia, 43(5), 487-499. http://dx.doi.org/10.1007/bf02143577

Young R, Vecchione M. Evolution of the gills in the octopodiformes. Bulletin of Marine Science. 2002;71(2): 1003-1017.

Thanks for listening!

