People & Ideas: CO2 and Chemoreception

Holding your breath creates a vigorous drive to breathe.

Why is breathing important?

- Gas exchange: acquire O₂ and eliminate CO₂

Back then, this wasn't known.

Why do we breathe? What happens if we stop breathing?

A. Kussmaul

<u> 1857</u>

- Blocked brain circulation in anesthetized dogs
- Noticed cerebral vessels acquired vein-like appearance
- Induced hyperventilation and gasping in dogs

The head is important in responding to hypoxia and hypercapnia

What's more important: an increase in CO_2 or a lack of O_2 ?

T.B. Rosenthall (and others)

1862

- In animals, induced hyperventilation or gave mixtures of CO₂ to breathe
- Used narcotizing levels of CO₂

Low O_2 is a stronger stimulus for ventilation than high CO_2

But actually...

F. Mieschner

1885

- Human subjects
- Small ↑ in inspired CO₂ = significant ↑ in ventilation
- Larger \downarrow in inspired O_2 = non-significant \uparrow in ventilation

Normal stimulus to ventilation is CO_2 , not O_2

1980s

- Cross perfusion studies in dogs
- Connected artery and vein of Dog A to Dog B, and vice versa

What happens if we:

- Block the trachea of dog A?
 - Dog B hyperventilates
 - Dog A has apnea

- Dog B has apnea
- Give dog A hyperoxic air?
 - Dog B does not have apnea

Léon Fredericq

Léon Fredericq

Hyperventilation is due to a decrease in CO_2 , not an excess in O_2

More confirmation...

J.S. Haldane

1980s

- Human subjects (including himself and his son)
- Increasing inspired CO₂ by 3% produced ventilation changes
- Inspired O₂ reduced to 14% before same ventilation changes

pCO₂ in the respiratory centers normally regulates ventilation

... and a new observation...

H. Winterstein

<u> 1911</u>

- Injected animals with acid
- Saw an increase in ventilation

Arterial [H⁺] stimulates ventilation

$[H^{\dagger}]$ or CO_2 ?

J.S. Haldane et al.

Shortly after

CO₂-induced H⁺ produced a much bigger ventilation response than an equal increase in [H⁺] from fixed acid injection

H. Winterstein

1915

- Observed hypoxia causes blood to become alkalotic

OK, you're right

CO₂ Chemoreception: Linking CO₂ to Breathing Continued refinement by other figures:

M.H. Jacobs

CO₂ can diffuse into cells and make them acidic, but H⁺ of fixed ions cannot penetrate the cell wall easily

H. Winterstein

H⁺ locally in the respiratory centers, not the blood, regulate ventilation

R. Gesell

Intracellular H⁺ of cells in the respiratory centers regulate ventilation

Early 1900's: CO₂ regulates ventilation by changing intracellular [H⁺] in respiratory center cells

What do we know now about CO₂ chemoreception and how it impact breathing?

CO2 sensitive chemoreceptors show adequacy of alveolar ventilation relative to metabolism

The pCO₂ value represents:

In the arteriole blood

Chemoreceptors transmit changes in CO₂ to the respiratory control center

CO₂ levels are detected as changes in pH

$$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$$

CO₂ converts to carbonic acid, which dissociates into a proton and bicarbonate

→ In carotid bodies Type I cells have pH sensitive potassium channels, pH sensitive sodium extrusion protein: depolarize upon acidosis

What kinds of chemoreceptors are involved in CO2 sensing?

Peripheral Chemoreception: Carotid Bodies

- Close to bifurcation of carotid artery
- Pathway: carotid sinus nerve (CSN) → glossopharyngial IX cranial nerve → cell body in petrosal ganglion → medulla, nucleus tractus solitarius (NTS)

Peripheral Chemoreception: Carotid Bodies

- Carotid Chemoreceptors = major determinant of ventilatory CO2 sensitivity during normal breathing
- Low levels of hypercapnia: carotid > central contribution
- Quick response
- Maintains stable PaCO2 despite decrease in intracranial CO2-H+ chemosensitivity via CFN lesion

Peripheral Chemoreception: Aortic Bodies

- Between arch of aorta and pulmonary artery
- Joins vagus X cranial nerve → cell body in nodose ganglion → medulla, NTS

Peripheral Chemoreception: Aortic Bodies

- Sense O2 saturation
 - Carboxyhemoglobinemia (CO + Hb)→ stimulation of aortic bodies before carotid bodies
- Important in the chronic absence of carotid bodies
 - Recovery of hypoxic ventilatory response from sectioning of carotid sinus nerves

are inhaled

Central Chemoreception: Medullary Receptors

- Location: brainstem, cerebellum, hypothalamus, midbrain
 - Previously: ventral surface of medulla
 - Medullary blood vessel distribution → located more deeply in the medulla?

Central Chemoreception: Medullary Receptors

- Detect CSF pH (CO2 levels)
 - CO₂ accessible where there is high perfusion of arterial blood
 - Local acidosis stimulationincreased ventilation

Connections between peripheral and central chemoreceptors?

Interdependence between central and peripheral chemoreceptors

- Anesthesia vs awake states
 - hypocapnia results in apnea
 - 'Wakefulness drive' overrides inhibition
 - Balance between both inputs
- Carotid bodies inhibited ⇒ compromised central CO2 response
 - CB contribute tonic drive to normal breathing
 - Bilateral CB resection: reduced central CO2 sensitivity
 & plasticity

Interdependence between central and peripheral chemoreceptors

- Potential pathway:
 - Carotid afferents →
 synapse at NTS →
 possibly communicate
 with retrotrapezoid
 nucleus (RTN, a central
 chemoreceptor site)
 - Phox2b transcription factor defect & abnormal CO2 response

What can go wrong?

- 1. Sudden Infant Death Syndrome (SIDS)
- 2. Lesions in brainstem
- 3. Congenital Central Hypoventilation Syndrome (CCHS)

Sudden Infant Death Syndrome and Hypercapnia

Sudden death of infants under 1 years old during sleep → SIDS infants show impaired ventilatory response

Sleeping face-down →
rebreathing exhaled gases →
increased inspired CO₂

Hypercapnia is sensed by normal infants, leading to arousal and protective reflexes

SIDS is related to muscarinic receptor binding in the Arcuate Nucleus

Kinney and colleagues considered muscarinic binding in 17 regions of the brainstem between SIDS and acute control groups:

Significant difference found in cell number (↓) and muscarinic binding (↓) of the Arcuate Nucleus (region of rostral ventrolateral medulla RVLM) between the 2 groups

Ventilatory abnormalities observed in individuals with lesions in the RVLM

Morrell and colleagues studied patients with lesions in the RVLM, cerebellum, pons or medial medulla and found:

RVLM group had below normal sensitivity to inhaled CO₂
Non-RVLM group had normal sensitivity to inhaled CO₂
Both groups showed normal breathing during awake state, while RVLM group displayed fragmented sleep and obstructive sleep apnoea.

→ similar to animal models (cat) where RVLM is disrupted

CCHS is characterized by the absence of central chemoreception

- → increasing the CO₂ levels of inspired air does not increase breathing
- → most dramatic response is seen during sleep: severe hypoventilation during sleep requiring night time ventilatory support for survival

Paired-like homeobox 2B gene (PHOX2B) is disease-defining for CCHS

- Transcription factor involved in the autonomic nervous system reflex
- Individuals with CCHS are heterozygous for PHOX2B mutation
- 90-92 % of mutations: polyalanine repeat expansion mutation
- 8-10 % of mutations: missense, frameshift, nonsense (non-polyalanine repeat expansion)

Mouse models of CCHS show irregular breathing patterns and do not respond to an increase in CO₂

Mouse models of CCHS shows reduction in glutamatergic Phox2b-expressing neurons in parafacial regions (RTN/pFRG)

Thank you for listening!